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A plot of the logarithm of absorbance ratio of conformationally sensitive infrared bands against 
reciprocal temperature for samples measured at a constant cooling rate has the form of a curve 
with asymptotes intersecting at the temperature To . For substances with two rotational isomers, 
the free activation enthalpy of the conformational transition 1:l.C * may be determined from the 
temperature To and the known cooling rate either by means of the empirical relation d T -1/ 
/ dt = 1'04 . 1010 exp ( - 1:l.C* /RTo) or more precisely by mean s of an explicit relation derived 
from an analysis of kinetic equations. 

Tn our previous papers 1 ,2 we have shown that the kinetics of conformational transitions may be 
foll owed by measurements of ~he temperature dependence of infrared band intensities . As long 
as the measured substance is in thermodynamic equilibrium, the logarithm of the absorbance 
ratio of the conformationally sensitive bands is linearly dependent on reciprocal temperature 
with the slope of the dependence indicating the enthalpy difference (1:l.H) between the two con
formers . By analysis of a plot which deviates from a straight line, the rate of establishment of equi
librium may be determined by numerica l analysis of kinetic equations. This method we have 
used for the determination of the activa tion energy of conformational transitions in chlorocyclo
hexane 1 and of the activation enthalpy in a series of secondary chloroalkanes2

• 

In this paper we wish to show that it is possible to make use of the characteristic 
shape of the temperature dependence of the absorbance ratio of conformationally 
senstitive bands for a simple determination of free activation enthalpies of conforma
tional transitions, without the use of a computer. 

The determination of the temperature dependence of rate constants of chemical 
reactions from kinetic measurements at variable temperature has also been the sub
ject of some other papers (see e.g. ref. 3 and the literature cited therein). In these 
the rate constants have been obtained by numerical differentiation of the obtained 
time dependence of the measured component concentration in the reaction mixture. 
In our experimental setup which permits concentration measurements in intervals 
of three minutes or longer, the numerical differentiation of the concentration plot 

Part II of the series Studies of the Kinetics of Conformational Transitions by Vibrational 
Spectra; Part I: This Journal, in press . 
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is not possible and the rate constants can only be obtained by integration of the 
kinetic equations at variable temperature, as has been done in the papers1 ,2, as 
well as in the present one. 

Analysis of the Time Dependence of the Conformer Concentration Ratio 
at Uniform Cooling 

The conformational equilibria in a substance which exists in the form of two con
formers may be described by the equation 

where c~ = k21/(k12 + k21) is the equilibrium concentration of the first component. 
At constant temperature the rate constants are time independent and the equation 
has the solution 

(2) 

where c~ is the concentration of the first component at time zero. If the temperature 
is varied with time, the constant k12 and k21 are time dependent. The solution 
of equation (1) is then obtained in the form 

cl(t) = e k21(t) . e dt. 
- fCk12Ct)+k2ICt»dt f f[kI 2Ct)+k2 ICtlldt 

(3) 

Further analysis will concern the case where liTis a linear function of time (liT = at), 
and the rate constants correspond to the Arrhenius relation 

k21 = A2 exp (-EiIRT), k12 = Al exp (-EiIRT) . 

For this case we obtain f(k 12(t) + k21 (t) dt = -(Adbl) exp (-btt) - (A2Ib2) . 
. exp ( - b2 t), so that 

cl(t) = {exp [(AlibI) e- b1t + (A2Ib2) e-b2t] } . 

. {c~ exp [ -(AlibI) e- b1to - (A2b2) e- b2tO] + 

+ ft A2 e- b2X exp [ -(AlibI) e- b1x - (A2Ib2) e-b,x] dx} 
to 

(4) 

where b1 = aE~/R, b2 = aE;IR and a is the rate of cooling. After performing the 

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977) 



Free Activation Enthalpies of Conformational Transitions 2289 

substitution z = (A1Ib2) exp (-b1x) in the integral of Eq. (4), then dz = - A2 . 
. exp (- b1x) dz, (A l /b 1) exp (- b1x) = Bz<1., where IX = b1/b2 = Ei/Ei and B = 
= (AlibI) (A2Ib zt<1.· In this way the integral of Eq. (4) assumes the form I exp . 
. ( - x - Bx<1.) dx with limits from (Azlb z) exp ( - bzto) to (Azlb2) exp ( - b1t). 
Introducing the function F(x, IX, B) = exp (x + Bx<1.) Ix'" exp (-u - Bu<1.) du , Eq. (4) 
is obtained in the form 

If we begin the cooling from a temperature where k2I is large compared to bz (i.e. 
from a temperature where the reaction rate is still so large that equilibrium is main
tained in the system), the second member of this expression is negligible for values 
of t only slightly larger than to (the factor exp [( - A1Ibz) e- b2to + (A2Ib2) e- b2t

] is 
small). We then obtain 

An analysis of the properties of the function F(x, IX, B) as well as directions for 
a numerical calculation of its values are given in the Appendix. 

FIG. 1 

Calculated Curve of the Logarithm of Concentration Ratio y = log.o (el fc2) ' 102 
us Logarithm 

of Equilibrium Concentration Ratio x = log. 0 (cVc~) . 102 for the Case that the Ratio of Activa
tion Enthalpies for the Transition of Two Conformers IlHi fllHt = 1,04 and for B = 0,15. 
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Numerical evaluation of this function has been made for the values IX = 1·04; 
B = 0'15; x = (A2fb2) exp (-b2t) = (Ct.B . lOzY/(1-a); Z = 0·67 to 0·95 with a step 
0'01; z has the meaning of 10gio (c~fcn in the time considered. From the calculated 
value cl(t) we calculated 10giO [c l(t)f(1 - Cl(t»], which we plotted against loglo . 
. (c~fc~) (Fig. 1). 

From Fig. 1 it can be seen that for z < 0'76, loglo (c1fc2) differs from loglo . 
. (c~fc~) by less than 0·001. For z > 0'89, loglo (c1fc2) differs from the limit value 
for t = 00, loglo (c,?fc'f) = 0'8189, by less than 0·001. Between these values, a rela
tively sharp transition from the asymptote loglo (CdC2) = loglo (c~fc~) to the asymp
tote loglo (CdC2) = 0·818856 takes place. The limit value oflog lO (CdC2) for liT -;. 00 

can be easily obtained experimentally by following the plot of \OgIO (cdcz) vs 1fT. 
By means of this limit value of the logarithm of the concentration ratio the tempera
ture To may be defined as the temperature at which loglo (cVc~) =; loglo (c,?fc ';.' ). 

Determination of the Free Activation Enthalpy of Conformational Transitions 

As shown in the Appendix, rar. 4, the approximate expression for c'f' is 

c'f' = F(O, Ct. , B) = 1/(1 + IXBx~-I), (7) 

where Xo is the solution of the equation xo + IXBx~ = e - c (C is the Euler constant) . 

By means of the relation (1 - c'f')fc,? = c~(To)/c~(To) we obtain therefrom 

and further 

(8) 

(9) 

or 

(10) 

Further we have 

(11) 

and therefore 

(12) 
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Eq. (12) determines the value k21/E~ from the values of the rate of cooling a and from 
the limit concentration c,? equal to the equilibrium concentration c~(To) at tempera
ture To. The values c~(To) and a are both experimentally accessible, so that by plot
ing the values In (k2dED us ljTo for various values of cooling rate we can de
termine Ej, and from it the frequency factor of the Arrhenius relation. By measuring 
the temperature dependence of the concentration only at one rate of cooling a, 
the analysis can be based on the Eyring relation 

k21 = (k/h) Texp (6.si /R - f...H i jRT) . (13) 

A direct solution of the kinetic equations by the application of the Eyring relation 
is much more complicated than the solution for the Arrhenius relation. The solution 
procedure is indicated in the Appendix, par. 8. However, in order to obtain the ap
proximate relation for the rate constant at temperature To, it is sufficient to replace T 
in the member kT/h in the Eyring equation by the expression To exp ((T - To)/T), 
which differs very little from T in the vicinity of To (the only region seriously af
fecting the values of c l ); the Eyring relation can then be transformed to the Ar
rhenius relation with the parameters 

Al = (kTo/h) exp (f...S i /R + 1); A2 = (kTo /h) exp (f...Si /R + 1) ; 

Ei = f...Hi + RTo; Ei = f...Hi + RTo. By means ofEq. (12) we then obtain 

(i1Gi /RTo) = 24·337 - In [(f...Hi /RTo) + 1)] - In a - In [1 - c~(To)] (14) 

By means of Eq. (14), the free activation enthalpy f...Gi at temperature To may be 
obtained from the known cooling rate, the limit value of the ratio of component 
concentrations log lo (CdC2) and from the temperature To. Besides the experimentally 
easily accessible quantities, relation (14) also contains the member In [(f...HijRTo) + 
+ 1]. In computing f...Gi we make use of the circumstance that this member is 
logarithmic, so that even very roughly estimated values of f...H i yield very good 
values of f...Gi. E.g. by changing (f...Hi /RTo) + 1 in the ratio 2: 3, f...Gi changes 
by 0·12 kcal/mol at 150 K. The practical procedure is to estimate f...Hf and to cal
culate f...Gi. From the thus determined f...Gi we determine f...Hi under the assumption 
that f.,.,Si = 0 or f...Si = (Sl - S2)/2. By repeating this process, the value of f...Gi 
can be obtained very quickly. If e.g. in Fig. 1 we put a = 10- 7 and Ei/E~ = 1'04, 
then suitable parameters of the Arrhenius equations are (Ei = 11897 cal/mol, 
Ej, = 11438 cal/mol, Al = 5'3955.1011 S-I , A2 = 8'5512 . 1011 

S-I) and the tem
perature To = 161·6 K. For this temperature the free activation enthalpy defined 
by the Eyring relation is for these values equal to f...Gi = 12482 cal/mol, f...Gi = 

= 11 878 cal/mol. The free activation enthalpies computed by means of relation (14), 
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yield the values ilG~ = 12461 cal/mol, ilGi = 11857 cal/mol. This agreement 
shows that relation (14) permits determination of ilG* with an accuracy better than 
experimental possibilities. 

The temperature To may also be used for an approximate estimate of ilG*, based 
on the Eyring relation and the assumption that at the temperature To the relative 
cooling rate T( d T- 1/dt) is equal to one half of the rate constant. In this case 

2(dT- 1/dt) = (k/h) exp (-ilG * /RTo) = 2·08. 1010exp (-ilG* /RTo). (15) 

Values estimated in this way may be refined by the use of relation (14). Using the 
empirical relation (15), the value ilG* = 12580 cal/mol is obtained for the above 
case. 

For a cooling rate around 5 .10- 7 K- 1 
S-l the values of ilHi/RTo + 1 lie in the 

vicinity of 35. For this value and the value 1 - c~(To) = 0·102 (i.e. 10'2%) Eq. (15) 
is identical with Eq. (14). 

Example of a Determina-tion of Free Activation Enthalpies by Means of the 
Derived Expressions 

The molecule of chlorocyclohexane can assume two conformations, the axial 
and the equatorial forms4 - 7 , respectively. In order to obtain the free activation 
enthalpy of the transition between these two forms, we have cooled the 30% solu
tion of the sample in nujol at the rate 5 . 10- 7 K -1 S -1 with simultaneous recording 
of the infrared bands at 560 and 512 em -1, characteristic of the axial and equatorial 
forms of cyclohexane, respectively. From the plot of the logarithm of the absorbance 
ratio of these two bands against T- 1 (see ref. 1, Fig. 1) we obtained from the limiting 
value of the absorbance ratio the value of T~ = 161 K. For the ratio of absorbance 
coefficients1 ~560/~512 = 5, Cax 0·14 and Ceq 0·86 were found at To. For these values 
by means of Eq. (15) we calculated the free activation enthalpy ilG* 12·2 kcal/mol 
and from Eq. (14) the free activation enthalpies ilG:~A 11·9 kcal/mol and ilG1~E 11·3 
kcal/mol. In the preceding paper1, for this system the parameters of the Arrhenius 
relation have been obtained by numerical integration, yielding the Eyring free 
activation enthalpies ilG:~A 11·9 kcal/mol and ilG:-+E 11-4 kcal/mol. These values 
agree well with the values obtained from Eqs (14) and (15). 

The relations (14) and (15) were used also for the calculation of free activation 
enthalpies for systems analyzed numerically from kinetic equations in the preceding 
paper2. The mean quadratic deviations of the values ilG * obtained by means of (14) 
and (15) with respect to the values from the preceding paper are 0·35 kcal/mol and 
0·5 kcal/mol. These results indicate that the relation (14) which was derived for 
a twocomponent reversible reaction, may in good approximation be applied also 
for a threecomponent system. 
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APPENDIX 

]n paragraphs 1- 7 of this appendix, the function F(x, Ct, B) will be analyzed. In paragraph 1, 
the transformation of this function to an identical function of different arguments is derived; 
this transformation permits a transition from a range of bad convergence to a range where con
vergence is better. Paragraphs 2- 4 are devoted to the function F(O, Ct, B). In paragraph 2, 
a simple series for the calculation of the function F(O, Ct, B) is derived; in addition it is shown that 
for Ct < 1, F(O, Ct, B) is a whole transcendental function of the parameter B (according to para
graph I, for Ct > 1 it is then a whole transcendental function of B -l/a. In paragraph 3 a more 
complicated series is derived; for small Band Ct in the vicinity of 1 it converges more rapidly 
than the series of paragraph 2. In paragraph 4 a &imple approximate relation for the value of the 
function F(O, Ct, B) is derived, valid for CJ. ~ I; in the text this has been used for the derivation 
of the relations for /:;.C '" . In paragraph 5 calculation of the function F(x, Ct, B) is discussed for the 
range of small x, i.e. for the range where the reaction rate is already small. In paragraph 6 the 
function F(x, IX, B) is derived for large x , where the reaction is rapid. In paragraph 7 the com
puting procedure is given for intermediate values of x for the cases where the required accuracy 
cannot be attained by the combination of the methods of paragraphs 5 and 6 for the whole range 
of x. Finally in paragraph 8 our problem is briefly formulated for the case of the Eyring rate 
equation. 

1. In the integration defining F(x, Ct, B) we make substitution z = Bta and then integrate 
per partes withf'(z) = B - l /a . z(1 /a-l) exp ( - B - l /azl /a); g(z) = e -Z: 

or 

(16) 

2. For x = 0 the member exp (- Bt a) is developed in a Taylor series and the resulting inte
grals are expressed by means of the function T: 

e- t - Bt" dt = I - -- e - t dt = 1.., 

fo
OO 00 f oo ( - Bl,ka ~ (_B)k r(k Ct + I) 

k=O 0 k! k=O k! . 
(17) 

For Ct < 1 this series is convergent for every B, for Ct > 1 it is divergent for every B, but for 
small B it is semiconvergent. For Ct > 1 the formula from the preceding paragraph may be used; 
we see that for IX < 1, F(O, Ct, B) is a whole transcendental function of B, for Ct > I it is a whole 
transcendental function of B -l /a. For Ct near to 1 and for large B the series converges very slowly; 
in this range it is better to use the semiconvergent series formed by the transformation of para
graph I. For Ct = I, F(x, I, B) = I/(B + 1). 

3. foOO exp ( - t - Bt a) dt = f: exp [-(B + 1) t + B(t - fa)] dt = 

= _1_ fOO exp{-t + _B_ [t- (B+ I)l - ata]} dt = 
B+l 0 B+l 

= _1_ ~ ( _ B_ )k ~ (_I)S (B + l)s(l-a) r(k + 1 + s(Ct - 1» 
B+lk~O B + l a~o s!(k-s)! F(O,Ct,B). (18) 
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If in this series the factor (_1)5 is omitted, we obtain a series of positive members majorant to the 
original one; the sum of this majorant is equal to Jg' exp (- t + Bta) dt. As this integral exists 
for IX < 1 (from a certain to, Bta < t /2, so that the integrand is smaller than e - t/2), also our 
series is convergent for IX < 1. For IX < 1 the series is divergent, but for small B and IX R> 1 
it is semiconvergent. For IX in the vicinity of 1 this series converges more rapidly than the series 
of paragraph 2, because the sum in s is the kth difference of the function r(k + 1 + x) (B + 1) - x I 
I k! at x = 0 with step IX - 1, so that for IX near to 1 this expression decreases very rapidly with 
increasing k. If B is small and IX > 1 near to 1, it is better to use the semiconvergent development 
with these parameters, instead of the transformation of paragraph 1 (the transformed series 
converges more slowly). This development was used for a numerical computation of the function 
F(O, 1'04,0'15) = 0·868240 using the calculator Sharp PC-I002. 

4. f: exp ( - t - Bta) dt = f: exp [-(I + IXBx~-l) f] exp [B(IXX~-lf ~ fa)] dt. (19) 

The second member is developed in Taylor series by IX in point IX = 1 and only the first two mem
bers are considered: 

exp [B(IX~-l - t a)] R> 1 + (IX - 1) B(t + tIn Xo - tIn t). 

By integration of the first member we obtain 1/(1 + IXBx~-l) the second member is integrated 
per partes 

(IX - 1) B f: (t + tIn Xo - tin t) exp [-(1 + IXBx~-I) t] df = 

= (IX - l)a
B 

i {[ - exp [- (1 + IXBx~-l) t] (t + tIn Xo - tIn t)]g' + 
1 + IXBxO 

+ f: (1 + In Xo - 1 - In t) exp [-(1 + <xBx~-l) t] dt} = 

= ~~1 2 [Inxo + C+ In (I + IXBx~-l)], 
(l + <xBx~ ) 

(20) 

where C = 0'5772156649 is the Euler constant. The value of Xo is selected so as to make the 
integral of the second member zero: Xo = IXBx~ = e -c. This equation may be solved e.g. so that 
it is transformed to the form Xo = e- c/(1 + IXBx~-l) and solved by an iterative procedure 
with the first iteration x~l) = e- c /(1 + IXB); convergence for IX near to 1 and for small B is 
very rapid. In this way we have derived the approximate relation 

F(O, IX, B) R> 1/(1 + IXBx~-l) (2l) 

where Xo is the solution of equation Xo + IXBx~ = e - c; this relation is valid for IX near to 1 and 
for small B. By means of this relation we obtain e.g. F(O, 1'04,0'15) R> 0 ·868371 with an error 
1'3.10- 4 as compared to the exact values. 

5. Let us calculate the integral lex, IX, B) = ,So exp [-t - Bta] dt. Then F(x, IX, B) = 
= exp (x + Bxa) [F(O, IX, B) - lex, IX, B)]. For the calculation of the integral let us develop 
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the exponential in a Taylor series and integrate one member after the other 

[(x, 0:, B) = L L (_I)k dt = I
x 00 k B sl+ s(a-l) 

o k=O ,=0 (k - s)! s! 

00 k B sxk+s(a - 1)+1 

= L L (_1)k -:-:--------:-c------:--- --
k=O s=O (k - s)! s! [k + s(o: - 1) + 1] 

(22) 

This series can be transformed so as to make convergence more rapid for 0: near to I. We trans
form the term I j [k + sea - 1) + 1] and obtain 

OCJ ( - x _ Bxa)k 
I(x, 0:, B) = x I 

k=O (k + I)! 

00 k B'xk + s(a-l)+1 

- (0: - I) I I (_l)k ~--:-------:-------:-------
k=ls=1 (k- s)!(s-I)! (k+ I) [k + (o: - I)s+ I] 

OCJ k 
" (-x - Bx) 

=XL... + 
k=O (k + I)! 

k B sx k + s(a- 1 )+1 

+ (0: - I)Bxa L I (_I)k ___ ----.,.- ------ - - -
k=O s~Q (k - s)! s! (k + 2) [k + 1 + 0: + s(o: - 1)] 

(23) 

With an analogous transformation of the member I j [k + 1 + 0: + sea - 1)] and by its repeating 
we obtain 

I(x, 0:, B) = x L (a - I)S (Bxa)S L 
s=O k=O k! 7C [k + 1 + s + j(o:- 1)] 

j=O 

=X + 
[

I - exp (-x - Bxa) 

x + Bxa 
L ( 0: - J)S (Bxa)S I . 00 (-x _ Bxa)k ] 

s=1 k=Ok!j:o[k+l + s+ j (a - J)] 

(24) 

The last transformation cannot be used for very small x because of the loss of significant digits 
in the subtraction 1 - exp (-x - Bxa). The series converges for all positive x, a, B, because 

00 00 

for 0: ~ 1 it has been majorant x L (a - J)S (Bxa)S L (x + Bxa)k jk ! (s + 1)s+1 and for 
s=O k=O 

a ~ the majorant x I: (1 /0: - I)S (Bxa)S I: (x + Bxa)kjk! (s + 1)s+l) both of which converge 
s=o k=O 

for all positive x, 0:, B. Convergence by s is very rapid for a near to 1, small B and not too large x, 
thanks to the factor [(a - 1) B]S, convergence by k is comparable to the convergence of the series 
for e - x. For larger values of x convergence is very slow and loss of significant digits occurs 
in the subtraction F(O, a, B) - I(x, 0:, B), so that the formula is not suitable for calculation. 
This formula was applied in the calculation of the function F(x, 1·04,0·15) on the calculator 
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SHARP PC-I002 for the values 

IOgI0[C~/(1 - c~)] ~ 0'79, i.e. x ~ 2-641709434. 

6. In the integral we make the substitution z = t + Bt tZ , dz = (1 + rxBl tZ - l
) dt : 

F(x, rx, B) = exp (x + BxtZ ) f: exp ( - 1 - Bt tZ ) dt = 

= exp (x + BxtZ) f CO fez) exp (-z) dz, 
x+BxCX 

(25) 

where fez) is a function of the variable z defined parametrically by the equations f(z) = 

= 1/(1 + rxBl tZ - 1), z = t + BltZ. We develop the function fez) in a Taylor series at z = x + Bxa. 

and integrate member after member F(x, rx, B) = f(x + Bxa.) + -£. (dk f(z) /d/k)z= x+Bxa . The 
k=1 

derivative of the function fe z ) is calculated according to the well known formula for the derivative 
of a parametric function d/fdz = (df/dt) / (dz /dt); in this way a parametric expression of the 
derivative and by repeating this procedure the higher derivatives are obtained. The result is 

dkf (rx - 1) c(1 - c) (-(rx + I) )k-1 [rx - I (rx - I)ZJ 
dzk = - t+ rxBl tZ 2(t+ rxBttZ) P k - 1 ~(1- 2c), ~ , 

where c = 1/(1 + rxBl tZ - 1
), Po(u, v) = 1, Pk(u, v) = [k + (k + 2) u] P k - 1 (u, v) + (u z - v) . 

. 8Pk -1 (u, v)/8u. From here P 1 (u, v) = 3u + 1, Pz(u, v) = lSuz + lOu + 2 - 3v = (Sr z + s) / 3, 

P 3 (u, v) = IOSu 3 + 10Suz + (40 - 4Sv) u + 6 - 19v = (3S,.3 + (ISr + 4) s) /9, P 4 (u, v) = 

= 94Su4 + 1260u3 + (700 - 630v) u2 + (196 - S04v) u + 24 - 1l6v + 4Sv2 
= (IOSr4 + 

+ (70r2 + 28,. + 8 + Ss) s) /9, P 5 (u, v) = 1039Su5 + 1732Su4 + (12600 - 94S0v) u3 + (S068-
- 10962v) uZ + (1148 - 4732v + lS7Sv2

) u + 120 - 776v + 729v2 
= (11SS 5 + (lOSOr3 + 

+ S04rz + (224 + 17Ss) r + 64 + 68s) s)/27, where r = 3u + 1, s = 1 - 9v = 4(2 - rx) . 
. (2rx - 1)/(rx + 1)2. The latter expression by means of rand s is numerically more simple, and 
for this reason it was used in the practical calculation; it also indicates that for 1/ 2 ~ rx ~ 2, 

Pk(u, v) > 0, so that all derivatives are functions of z with decreasing absolute value. In point 
Z = x + BxtZ, t = x, so that by substitution we obtain 

(rx - I) co(1 - co) ~ [ -(rx - 1) J k [rx - 1 
F(x, rx, B) = Co - x + rxBxa. . k~O 2(x + rxBxa.) Pk ~ (1 - 2co), 

(26) 

where Co = 1/(1 + rxBx a.- 1). The same result is obtained, if the equation dC1(t) /dt = - [k 12(t) + 
+ k21 (1)1 [c 1 (t) - c~(t)] is transformed to the form c1 (t) = c~(t) - (dc1 (1) /dt) / [k 12(t) + 
+ k21 (t)] and solved by iterative procedure with c~l)(t) = c~(t). Here x = (A 2 /b2) exp (-b21), 

Co = c~(t), and t is time. 

Because the function fez) has a singularity at z = 0, the radius of convergence of the Taylor 
series is at most x + Bxa.. Thus in our development this series is divergent, but for large x it is 
semiconvergent. In addition, for 1/2 ~ rx ~ 2, the value of the function is limited by any two 
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neighbouring partial sums of the semiconvergent series. For ex near to 1, pk(u, v) is near to k!. 

Because i k!/(- t)k is an asymptotic development of the function rp(t) = t et£1 (I), 
k=O 

£1 (I) = ft
OO 

(e - x/x) dx, our formula can be rewritten in the form 

(ex - 1) Co (1 - co) { (2(X + exBXfl.») 
F(x, ex, B) = Co - rp + 

x + exBxfl. ex + 1 

00 ( - (ex + I) )k [ {ex - 1 (ex - I)2} J} 
+ k~l 2(x + exBxfl.) Pk;:t\ (1 - 2co)';:t\ - k! . 

where 

(27) 

By this transformation ccmvergence is accelerated and the limits of the applicability of the asymp
totic development are increased. More generally the function y rp(fJ . 2(x + exBxfl.)/(rx + 1» may be 
used instead of the function rp(2(x + rxBxfl.) /(rx + 1», where fJ and yare suitably selected con
stants, and y k!/fJk is subtracted from Pk(u, v). Se!ecting fJ = Pi+l(i + 2) /Pi + 2, y = pi-I Pi + 1 / 

/ (i + I)! and if in addition Pi + 3 ~ y(i + 3)!/ fJ' +3, then the value of the function F(x, rx, B) 
lies between the i-th and (i - I)st partial sum of the series. By this selection of the values fJ and y 
for two neighbouring values of i we obtain the best upper and lower guess for the function 
F(x, rx, B). For a practical calculation we have selected for fJ the largest value fJ ~ Pi + I ( + 2) / 
/ Pi +2 for which 2fJ(x + rxBxfl.) / (ex + 1) is an argument of the function rp(x) in tablesS

, in order 
to avoid table interpolation: y is given by the formula y = fJi+ I Pi + l/U + I)!, In this way the 
limits of the integral are increased insignificantly; for Pi +2 > y(i + 2)! /fJi+2 the integral may not 
lie between the i-th and i-1st partial sum of the series, hence the condition fJ ~ Pi + 1 (i + 2)/Pi +2· 
The asymptotic development according to this paragraph has been used for the calculation of the 
function F(x, 1·04,0·15) on the calculator SHARP PC-I002 for values 10glO(c~ /(I - cr» ~ O·SO. 
A control calculation for the value of the argument 0·79 (i. e. x = 2·641709434), using the last 
transformation with i = 2 and i = 3 yielded limits of the value of F differing by 4. 10- 6

; the 
value calculated according to paragraph 5 lay within these limits. 

7. If the combination of the methods of paragraphs 5 and 6 does not lead to the required 
accuracy in the whole range of x, then 

f
XD 

F(x, rx, B) = ex + Bx~ x e - t-Bt~ dl + e- u F(xo, rx, B), (28) 

where (l = Xo + Bxg - x - Bxfl., Xo > x. Then 

f
XD f XD+BXD~ 

exp (x + Bxfl.) e-t-Bt~ dl = fez) exp (-z + x + Bxfl.) dz, 
x x+Bx IX 

(29) 

where fez) is the parametric function defined in paragraph 6. Developing the function fez) 

in a Taylor series at z = x + Bxfl. we obtain 

_ { (rx-l)co(l -co) 00 (_(ex + l))k 
F(x, rx, B) = e e colo(ll) - x + rxBxfl. . k~O lk + I (Il) 2(x + rxBxfl.) 

[ ( )2J } rx-I rx-I 
. Pk -- (1 - 2eo), -- + F(xo, rx, B) . 

rx + I rx+I 
(30) 
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k 

Here Ik(ll) = (eO I k!) rg t k e - t dt = eO - L:' lls Is ! and the other symbols have the same meaning 
s=O 

as in paragraph 6. The expression Ik(ll) has to be calculated by means of a Taylor series develop
ment of the function ell, or possibly by means of the recurrent formula Ik -I (ll) = (/Ik! + Ik(ll) , 
in case that there is danger of loss of significant digits in consequence of direct subtraction. 
In calculating by this procedure we start from values where the required accuracy can be reached 
from the asymptotic development of paragraph 6. The value of x is then decreased in suitably 
selected steps, with the old value of x always becoming the new xo' In this way we proceed 
until we reach the value of x for which the series from paragraph 5 is applicable. By suitable 
selection of the steps, an arbitrary degree of accuracy may be reached. 

8. For the Eyring relation k12 = (kTlh) exp [LiSt IR - LiHt I(RT)], k2l = (kTlh) exp . 
. [LiSt I R - LiHt I (RT)] . Let us set I I T = at , Al = (k l ha) exp [LiSt IR], A2 = (k l ha) exp . 
. (f..st IR), b l = a f..Ht IR, b2 = a LiGt IR, ex = bd b2 = f..Hl f..Ht. It should be noted that 
the values of A 1 and A 2 are of the order of Wi 7. Then 

f
~t ~ 

cl (t) = exp [A1El(blt) + A2E I (b21)] 0 (A2Ix) exp [-x - AIEI(exx) - A2E I (x)] dx . 

(31) 

We make the substitution z = Al E1(exx) + A2E l (x), 

dz = -(AI e-<Xx + A2 e- X
) x-I dx: 

(32) 

where v = A1EI(blt) + A2E I (b21) and the function I(z) is defined parametrically by the rela
tions I(z) = A2 e-X/(A I e-<Xx + A2 e- X

), z = A1El(exx) + A 2 E1(x). The function I(z) is 
developed in Taylor series at z = AIEI(blt) + A2E l (b2t) , i .e. x = b2t. Applying the relation 
dzl dx = -(AI e-<Xx + A2 e-X)lx we obtain for the derivatives expressions analogous to those 
of paragraph 6. By integration per partes with an upper limit 00 we obtain a semiconvergent 
asymptotic series applicable for small t. As soon as this series ceases to yield the required ac
curacy, we integrate per partes similarly as in paragraph 7, thus gradually increasing the value of t. 
For very large t the calculation would require too many steps; we then make use of the fact that 
r~t(A2 Ix)exp[-x-AlEI(exx)- A 2E l (x)]dx ">! (A2Ib2t)exp(-b2t) for very large I, or that 
for this integral an asymptotic development in the form of a power series in the variables I - I , 

exp (-bit) and exp (-b2t) may be obtained so that exp [-AIEl (exx) - A2EI (x )] is developed 
in Taylor series, the functions El (exx) and EI (x) are substituted by asymptotic developments, 
we integrate per parIes and in the result the functions EI (ex x) and El (x) are once more substituted 
by asymptotic developments. The value of the integral in the limits (b2 t', b2 1) is then obtained 
by subtracting the values in the limits (b2t', 00) and (b21, 00); t ' is selected as the largest of the t 
values for which the function c l (t) has been calculated by step integration. 
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